The meaning of the notations below complies with the original paper.

$$ \begin{align*} \mathbb{E} [f (w^{t + 1})] - f (w^t) & \leqslant \nabla f (w^t)^{\top} \mathbb{E} [(w^{t + 1} - w^t)] + \frac{L}{2} \mathbb{E} [| w^{t + 1} - w^t |^2]\\ & = - \gamma_t \nabla f (w^t)^{\top} \mathbb{E} \left[ \sum^K_{k = 1} \nabla f_{\mathcal{G} (k), x_i (t - K + k)} (w^{t - K + k}) \right] + \frac{L \gamma_t^2}{2} \mathbb{E} \left[ \left| \sum^K_{k = 1} \nabla f_{\mathcal{G} (k), x_i (t - K + k)} (w^{t - K + k}) \right|^2 \right]\\ & = - \gamma_t | \nabla f (w^t) |^2 - \gamma_t \nabla f (w^t)^{\top} \left( \sum_{k = 1}^K \nabla f_{\mathcal{G} (k)} (w^{t - K + k}) - \nabla f (w^t) \right) + \frac{K L \gamma_t^2}{2} \sum_{k = 1}^K \mathbb{E} [| \nabla f_{\mathcal{G} (k), x_i (t - K + k)} (w^{t - K + k}) |^2]\\ & \leqslant - \gamma_t | \nabla f (w^t) |^2 + \frac{\gamma_t}{2} | \nabla f (w^t) |^2 + \frac{\gamma_t}{2} \left| \sum_{k = 1}^K \nabla f_{\mathcal{G} (k)} (w^{t - K + k}) - \nabla f (w^t) \right|^2 + \frac{K^2 L M \gamma_t^2}{2}\\ & \leqslant - \frac{\gamma_t}{2} | \nabla f (w^t) |^2 + \frac{K \gamma_t}{2} \sum_{k = 1}^K | \nabla f_{\mathcal{G} (k)} (w^{t - K + k}) - \nabla f_{\mathcal{G} (k)} (w^t) |^2 + \frac{K^2 L M \gamma_t^2}{2}\\ & \leqslant - \frac{\gamma_t}{2} | \nabla f (w^t) |^2 + \frac{K \gamma_t}{2} \sum_{k = 1}^K | \nabla f (w^{t - K + k}) - \nabla f (w^t) |^2 + \frac{K^2 L M \gamma_t^2}{2}\\ & \leqslant - \frac{\gamma_t}{2} | \nabla f (w^t) |^2 + \frac{K^2 L M \gamma_t^2}{2} + \frac{K L^2 \gamma_t}{2} \sum_{k = 1}^K | w^{t - K + k} - w^t |^2\\ & \leqslant - \frac{\gamma_t}{2} | \nabla f (w^t) |^2 + \frac{K^2 L M \gamma_t^2}{2} + \frac{K^4 L^2 M^2 \sigma \gamma_t^2}{2}\\ & = - \frac{\gamma_t}{2} | \nabla f (w^t) |^2 + \gamma_t^2 \frac{K^2 L M}{2} (1 + K^2 L M \sigma) \end{align*} $$